Mathematics Problem Solving Scoring Guide: Plain Language Student Version

(Unofficial: to be used as a support for students as they learn to use the official scoring guide)

Process Dimensions	**6/5	4	3	*2/1
Making Sense of the Task Understand the ideas and change them into mathematics WHAT?	 The problem is changed into thoroughly developed ideas that work. The ideas are connected to other math ideas. 	The problem is changed into a math task with ideas that can work.	 Parts of the problem are changed into a math with ideas that can work. OR Only parts of the problem are understood. 	 Only a small portion of the problem is understood. OR No understanding is shown.
Representing and Solving the Task Choose the plan that works best for this problem. Use pictures, charts, words, graphs and/or numbers. HOW?	 A thoroughly developed plan is used. The plan uses advanced math. The plan is connected to other math ideas. 	The plan is complete and works.	 The plan could solve some parts of the problem. OR The plan has a few missing parts. High School Essential Skills ONLY: The plan does not use High School level math. 	 The plan has many missing parts. OR The plan cannot work. OR No work is shown.
Communicating Reasoning Use the language of math (words, equations, graphs, charts) to make your ideas clear to others. WHY?	 The path through the work is very clear. An explanation connecting each of the parts is given using precise mathematical language. All parts are labeled and identified. 	 The path through the work is clear. AND The work leads to a clearly identified answer. Math words and symbols are used. 	 The path is not clear or the math words and symbols do not make sense. OR The path leaves out important parts of the work. OR The answer is not identified. 	 The path to complete the work is just started. OR The parts do not connect to each other. OR No steps are shown.
Accuracy The answer is IS IT RIGHT?	 The answer is correct. The outcome extends beyond the question asked. OR The outcome connects to a related math idea or question. 	 The answer given is correct. The answer matches the work. The solution answers the question asked. 	 The correct answer is given but the work may have a small error. The answer is wrong due to a small error. OR The work leading to an answer is correct but is not finished. 	 The answer given is not correct. OR The answer given does not match the work. OR No answer is given.
Reflecting and Evaluating State and check your answer, and explain why it makes sense. CHECK?	 The problem is solved a second time using a different method. Different methods used are compared to each other. Evidence is provided that explores other possible answers and interpretations. 	 The answer is written in a complete sentence and answers the question that was asked. AND All of the work has been double-checked to show why the answer makes sense. 	 The answer is not written in a complete sentence or does not answer the question that was asked. OR Some, but not all of the work is checked. 	 The check does not work. OR The check is barely started. OR The check is not there at all.

^{**6} for a given dimension would have most of the list; 5 would have some of the list.

^{*2} for a given dimension would be inadequate in some of the list; while a 1 would be inadequate in most of the list.