Bethel School District Common Core State Standard Curriculum Map <u>8th Grade Mathematics</u>

CCSS Key:

Ratios & Proportional Relationships (RP) The Number System (NS) Expressions & Equations (EE) Geometry (G) Statistics & Probability (SP) * Focus Power Standard

Common Core State Standards for Mathematics (Outcome Based)		Learning Targets (Knowledge & Skills)	Engage NY Modules & Lessons	Assessments
Power Standard:	8.EE.B W	ork with radicals and integer expo	onents.	
8.EE.1. Know and apply the properties of integer exponents to generate equivalent numerical	8.EE.1.1	Use laws of exponents when multiplying numbers with the same base	Module 1: Integer Exponents and Scientific	
expressions. For example, $3^2 \times 3^{-5} = 3^{-3} = 1/3^3 = 1/27$.	8.EE.1.2	Use laws of exponents when dividing numbers with the same base	Notation	
	8.EE.1.3	Use laws of exponents when raising an exponential expression to a power	Lessons 1-6 <i>Mid-Module</i> <i>Assessment</i>	
	8.EE.1.4	Convert bases with negative exponents to fractions		

	8.EE.1.5 8.EE.1.6	Simplify algebraic expressions involving zero exponents Simplify algebraic expressions involving negative exponents	
8.EE.3. Use numbers expressed in the form of a single digit times an integer power of 10 to estimate	8.EE.3.1	Write numbers in scientific notation	Module 1: Integer Exponents and
very large or very small quantities, and to express how many times as much one is than the other. <i>For example, estimate the population</i>	8.EE.3.2	Multiply numbers written in scientific notation	Scientific Notation
of the United States as $3 \times 10^{\circ}$ and the population of the world as $7 \times 10^{\circ}$, and	8.EE.3.3	Divide numbers written in scientific notation	Lessons 7-9
determine that the world population is more than 20 times larger.	8.EE.3.4	Estimate values written in scientific notation	
	8.EE.3.5	Distinguish between small and large values of numbers in scientific notation by looking at exponents	
	8.EE.3.6	Use scientific notation to compare the relative size of two numbers	
	8.EE.3.7	Convert numbers to and from scientific notation and standard form	
8.EE.4. Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used.	8.EE.4.1	Multiply numbers written in decimal and scientific notation	Module 1: Integer Exponents and the Scientific
Use scientific notation and choose units of appropriate size for measurements of very	8.EE.4.2	Divide numbers written in decimal and scientific notation	Notation
large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.	8.EE.4.3	Choose appropriate units to represent very large or very small quantities	Lessons 10-13 <i>Module</i> <i>Assessment</i>

	8.EE.4.4	Read and understand scientific notation when generated by technology (3.5 EE -5 means 3.5 x 10^-5)					
	Power Standard: 8.G.G Understand congruence and similarity using physical models, transparencies, or geometry software.						
8.G.1. Verify experimentally the properties of rotations, reflections, and translations:	8.G.1.1	Construct a rotation using geometric tools	Module 2: The Concept of Congruence				
a. Lines are taken to lines, and line segments to line segments of the same length.	8.G.1.2 8.G.1.3	Construction a reflection using geometric tools Construction a translation using geometric	Lessons 1-5				
b. Angles are taken to angles of the same measure.		tools					
c. Parallel lines are taken to parallel lines.	8.G.1.4	Use and identify symbols such as A, A', A'' and AB , etc.					
8.G.3. Describe the effect of dilations [*] , translations, rotations, and reflections on two-dimensional figures using coordinates.	8.G.3.1	Identify the new coordinates of a translation as (x+/-a, y+/-b)	Module 2: The Concept of Congruence				
	8.G.3.2	Identify the new coordinates of a reflection over a given line	Lesson 6 (supplement due to limited				
*This will be addressed in the module on similarity (Module 3).	8.G.3.3	Identify the new coordinates of a rotation of a given number of degrees around a given point	coverage in ENY)				
8.G.2. Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of	8.G.2.1	Define congruence as a finite series of rigid motions	Module 2: The Concept of Congruence				
rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.	8.G.2.2	Write congruent statements such as $\triangle ABC \cong \triangle A'B'C'$ because	Lessons 7-10 <i>Mid-Module</i> <i>Assessment</i>				
	8.G.2.3	Determine if two figures are congruent by identifying the transformation used to	Lesson 11				

		produce the figures	
	8.G.2.4	produce the figures Describe the sequence of transformations from one congruent figure to another	
8.G.5. Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when	8.G.5.1	Find the measures of missing angles in a triangle	Module 2: The Concept of Congruence
parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.* For example, arrange three copies of the same	8.G.5.2	Identify vertical angles as congruent because they are created rotations or reflections	Lessons 12-14 Module
triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.	8.G.5.3	Informally describe the relationships created by parallel lines and a transversal	Assessment
	8.G.5.4	Formally describe the relationships created by parallel lines and a transversal using the technical vocabulary (alternate interior angles, etc.)	
*The highlighted area will be addressed later in the unit on similarity.	8.G.5.5	Find measures of the interior and exterior angles in triangles formed between parallel lines	
8.G.H Unde	erstand	and apply the Pythagorean Theorem).
8.G.6. Explain a proof of the Pythagorean Theorem and its converse.	8.G.6.1	Use the Pythagorean Theorem to find the missing side of a right triangle.	Module 2: The Concept of Congruence

Identify the parts of a right triangle (legs and

Lesson 15 (optional)

8.G.6.2

hypotenuse)

	8.G.6.3	Use the Pythagorean Theorem to determine if three length measurements form a right	
	8.G.6.4	triangle Determine if a triangle is a right triangle by using the Pythagorean Theorem	
	8.G.6.5	Verify the Pythagorean Theorem by examining the area of squares coming off of each side of the right triangle	
	8.G.6.6	Explain a proof of the Pythagorean Theorem	
8.G.7. Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real- world and mathematical problems in two and	8.G.7.1	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real- world problems in 2 dimension	Module 2: The Concept of Congruence
three dimensions.	8.G.7.2	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in mathematical and real-world problems in 3 dimensions	Lesson 16 (optional)
8.G.G Understand congruence		larity using physical models, transpa etry software.	arencies, or
8.G.4. Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of	8.G.4.1	Explain the process of dilation using the vocabulary scale factor and center of dilation	Module 3: Similarity
rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	8.G.4.2	Use a compass and ruler to dilate a two- dimensional object	Lessons 1-5
-,			Lesson 7

	8.G.4.3	Verify that the ratios of corresponding sides in dilated figures all have the same scale factor	Mid-Module Assessment
	8.G.4.4	Dilate a two-dimensional figure when given a scale factor	
	8.G.4.5	Given a dilated image, determine the scale factor between that and the original	
	8.G.4.6	Verify that corresponding angles in dilated figures are congruent	Lesson 8-9
	8.G.4.7	Using dilated figures, determine the length of missing sides	
	8.G.4.8	Know two figures are similar if the second can be obtained by the first from a series of dilation and rigid motions	
	8.G.4.9	Determine if two figures are similar when given a pre-image and an image	
	8.G.4.10	Given two similar figures, describe the sequence that proves their similarity	
8.G.3. Describe the effect of dilations, translations, rotations, and reflections on two-dimensional	8.G.3.1	Identify the new coordinates of a dilation as (rx, ry) when 'r' is the scale factor	Module 3: Similarity
figures using coordinates.	8.G.3.2	Identify the new coordinates of a similar figure after a dilation and series of rigid motions	Lesson 6
8.G.5. Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the	8.G.5.1	Use an informal argument to show that all triangles have an angle sum of 180 degrees	Module 3: Similarity

angle-angle criterion for similarity of triangles. For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.	8.G.5.2 8.G.5.3 8.G.5.4	Recognize that if two triangles have two corresponding angles that are congruent, then they automatically have three congruent angles and are therefore similar Use angle relationships to recognize congruent angles when given triangles formed between two parallel lines Determine if two triangles created between parallel lines are similar or not	Lesson 10-12 Module Assessment				
8.G.H Und	8.G.H Understand and apply the Pythagorean Theorem.						
8.G.6. Explain a proof of the Pythagorean Theorem and its converse.	8.G.6.1	Explain a proof of the Pythagorean Theorem using similar triangles.	Module 3: Similarity Lesson 13-14				
8.EE.D Analyze and solve	linear eo	quations and pairs of simultaneous l	inear equati	ons.			
8.EE.7.Solve linear equations in one variable.a. Give examples of linear equations in one	8.EE.7.1	Classify the solution of a linear equation in one variable as no solution, one solution, or infinitely many solutions	Module 4: Linear Equations				
variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form x = a, a = a, or a = b results (where a and b are different numbers). b. Solve linear equations with rational number coefficients, including equations whose	8.EE.7.2	Solve multi-step one-variable equations, with rational number coefficients including using the distributive property	Lesson 1-9				

8.EE.C Understand the connections between proportional relationships, lines, and linear equations.

8.EE.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.* <i>For example, compare a distance-time graph to</i>	8.EE.5.1	Use real-world examples to understand the difference between constant rate and average rate	Module 4: Linear Equations
a distance-time equation to determine which of two moving object has greater speed.	8.EE.5.2	Determine the unit rate for a given proportional relationship	Lessons 10 – 14
*Highlighted portion is addressed near the end of Module 4.	8.EE.5.3	Determine if a data set represents a proportional relationship	Mid-Module Assessment
	8.EE.5.4	Write a linear equation in two variables using a proportional relationship	
	8.EE.5.5	Predict unknown values using a proportional data set	
	8.EE.5.6	Graph a proportional relationship from a table and recognize that the unit rate is the change in y-values when x is increased by one	
	8.EE.5.7	Understand informally that slope is a number that represents the slant of a line and can be positive, negative, zero or undefined	Lesson 15
	8.EE.5.8	Understand that the unit rate of a proportional relationship is the slope of the line	

8.EE.6 Use similar triangles to explain why the slope <i>m</i> is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y = mx + b$ for a line	8.EE.6.1	Use a slope triangle to identify the slope of a line	Module 4: Linear Equations	
intercepting the vertical axis at <i>b</i> .	8.EE.6.2	Use two separate slope triangles on the same line and explain why they create similar triangles	Lesson 16	
	8.EE.6.3	Explain why you can use any two points on a line to determine the slope		

8.EE.D Analyze and solve linear equations and pairs of simultaneous linear equations.

8.EE.8. Analyze and solve pairs of simultaneous linear equations.	8.EE.8.a.1	Use two points to determine slope	Module 4: Linear Equations	
a. Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because	8.EE.8.a.2	Find the slope and y-intercept of a linear equation written in slope-intercept form	Lesson 17-21	
points of intersection satisfy both equations simultaneously.	8.EE.8.a.3	Graph a linear equation written in slope- intercept form		
b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3x + 2y = 5$ and $3x$	8.EE.8.a.4	Graph a linear equation written in standard form	Lesson 23	
+2y = 6 have no solution because 3x + 2y cannot simultaneously be 5 and 6.	8.EE.8.a.5	Write an equation given key information (slope, one point or two points)		
c. Solve real-world and mathematical problems leading to two linear equations in two	8.EE.8.a.6	Solve a two-variable linear equation for y		
variables. For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.	8.EE.8.a.7	Rearrange linear equations from slope- intercept form to standard form and vice versa		

8.EE.C Understand the connections between proportional relationships, lines, and linear equations.

8.EE.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.* <i>For example, compare a distance-time graph to</i>	8.EE.5.9	Compare different representations of linear relationships to determine which has a greater rate	Module 4: Linear Equations Lesson 22	
a distance-time equation to determine which of two moving object has greater speed. *Highlighted portion is addressed near the end of Module 4.			Lesson 22	

8.EE.D Analyze and solve linear equations and pairs of simultaneous linear equations.

8.EE.8.Analyze and solve pairs of simultaneous linear equations.a. Understand that solutions to a system of two linear equations in two variables correspond to	8.EE.8.a.8	Understand that the solution to a system of two linear equations is the point of intersection	Module 5: Examples of Functions from Geometry
points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.	8.EE.8.b.1	Graph two linear equations on the same graph and find the point of intersection	
b. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases	8.EE.8.b.2	Distinguish between systems one solution, no solution, and infinitely many solutions	Lesson 24 – 30 Module Assessment
by inspection. For example, $3x + 2y = 5$ and $3x + 2y = 6$ have no solution because $3x + 2y$ cannot simultaneously be 5 and 6.	8.EE.8.b.3	Solve a system of equations by substitution	
c. Solve real-world and mathematical problems leading to two linear equations in two variables. For example, given coordinates for two pairs of points, determine whether the line	8.EE.8.b.4	Solve a system of equations by elimination	

through the first pair of points intersects the line through the second pair.	8.EE.8.c.3	linear equations and solving the system	
8.F.F Use function	ons to n	nodel relationships between qua	ntities.
8.F.1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.	8.F.1.1 8.F.1.2 8.F.1.3	Know that a function assigns to each input exactly one output Understand that rate of change is not always constant and can offer examples of constant and non-constant situations Know that a vertical line does not represent a linear function because there are an	Module 5: Examples of Functions from Geometry Lesson 1-2
8.F.2 Compare properties of two functions each represented in a different way (algebraically,	8.F.4.4 8.F.4.6	infinite number of outputs for a given input x Determine if a table represents a function Compare two representations of functions	Module 5: Examples of Functions
graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.		(table, graph, equation)	from Geometry Lesson 3 - 4
8.F.3 Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A = s^2$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4)	8.F.3.1 8.F.3.2	Understand that the equation <i>y</i> = <i>mx</i> + <i>b</i> is a straight line Give examples of linear and non-linear functions	Module 5: Examples of Functions from Geometry Lessons 5-6

and (3,9), which are not on a straight line.				
8.F.4.	8.F.4.1	Construct a function to show relationships	Module 5:	
Construct a function to model a linear		between two quantities	Examples of	
relationship between two quantities.			Functions from	
Determine the rate of change and initial value	8.F.4.2	Use a table or graph to determine rate of change	Geometry	
of the function from a description of a		and show understanding of the situation	Geometry	
relationship or from two (x, y) values, including			Lesson 7	
reading these from a table or from a graph.	8.F.4.3	Use a table or graph to determine initial value		
Interpret the rate of change and initial value of		and show understanding of the situation		
a linear function in terms of the situation it				
models, and in terms of its graph or a table of				
values.				

8.G.I Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.

8.G.9 Know the formulas for the volumes of cor use them to solve real-world and	8.G.9.1	Identify the shapes of cones, cylinders, and spheres	Module 5: Examples of Functions from
mathematical problems	8.G.9.2	Use appropriate formulas for volume of cones, cylinders, and spheres in mathematical and real-world situations	Geometry Lessons 9 – 11 Module Assessment

8.SP.J Investigate patterns of association in bivariate data.

8.F.5.			Module 6:	
Describe qualitatively the functional	8.F.5.2	Explain how slope changes when given a	Linear	
relationship between two quantities by		graph.	Functions	
analyzing a graph (e.g., where the function is				
increasing or decreasing, linear or nonlinear).	8.F.5.7	Sketch a graph by analyzing a situation that has	Lessons 1-5	
Sketch a graph that exhibits the qualitative		been described verbally	Lessons 1-5	
features of a function that has been described		·		
verbally.				
8.SP.1.			Module 6:	
Construct and interpret scatter plots for	8.SP.1.1	Construct a scatter plot on a plane using	Linear	
bivariate measurement data to investigate		two variables	Functions	

patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	8.SP.1.2 8.SP.1.3	Interpret scatter plot as linear or nonlinear Interpret the graph as strong correlation (clustering) or weak (outliers)	Lessons 6-7 <i>Mid-Module</i> <i>Assessment</i>
	8.SP.1.4	Investigate the relationship between two quantities on a scatter plot	
	8.SP.1.5	Analyze the trend of a scatter plot and determine whether there is a positive, negative(linear), or no relationship (non-linear)	
	8.SP.1.6	Predict future outcomes using a scatter plot	
8.SP.2. Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear	8.SP.2.1	Informally fit a straight line to scatter plots that suggest a linear association.	Module 6: Linear Functions
association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.	8.SP.2.2	Informally assess the closeness of the fit of the line.	Lessons 8-9 Mid-Module Assessment
8.SP.3. Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercent. For example, in a linear model for a	8.SP.3.4	Interpret the real-world meaning of the slope and y-intercept in the context of the data given	Module 6: Linear Functions
intercept. For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.			Lessons 10- 11
8.SP.4. Understand that patterns of association can	8.SP.4.1	Create a frequency table with collected data	Module 6: Linear

also be seen in bivariate categorical data by			Functions	
displaying frequencies and relative frequencies	8.SP.4.2	Interpret a frequency table		
in a two-way table. Construct and interpret a				
two-way table summarizing data on two	8.SP.4.3	Determine if there is a correlation between	Lessons 13-	
categorical variables collected from the same		the information	14	
subjects. Use relative frequencies calculated for			Module	
rows or columns to describe possible	8.SP.4.4	Read a graph to determine a correlation	Assessment	
association between the two variables. For				
example, collect data from students in your	8.SP.4.5	Construct a graph based on information		
class on whether or not they have a curfew on		given		
school nights and whether or not they have				
assigned chores at home. Is there evidence that	8.SP.4.6	Make predictions and analyze the data		
those who have a curfew also tend to have chores?		between the variables in the frequency table		
chores				
	8.SP.4.7	Justify and defend the accuracy of my		
		predictions		
8.NS.A Know that there are n	umbers	that are not rational, and approxim	ate them by ratio	nal

numbers.

8.NS.1 Know that numbers that are not rational			Module 7:	
are called irrational. Understand informally	8.NS.1.1	Classify numbers as irrational or rational.	Introduction	
that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually	8.NS.1.2	Understand that the decimal expansion of rational numbers repeats eventually.	to Irrational Numbers using Geometry	
into a rational number.	8.NS.1.3	Understand that the decimal expansion of irrational numbers does not repeat.		
	8.NS.1.4	Convert the decimal expansion of a rational number to its a/b form.		

8.NS.2 Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., pi squared). For example, by truncating the decimal expansion of the square root of 2, show that the square root of 2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations	8.NS.2.1 8.NS.2.2	Estimate the size of irrational numbers by comparing them to rational numbers. Estimate the location of irrational numbers on a number line.	Module 7: Introduction to Irrational Numbers using Geometry		
8.G.8. Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	8.G.8.1 8.G.8.2 8.G.8.3	Construct a right triangle on a coordinate plane to determine the distance between two points Use the Pythagorean Theorem to find the distance between two points in a coordinate plane Determine or estimate the length of the hypotenuse of a right triangle on a coordinate plane	Module 7: Introduction to Irrational Numbers using Geometry		
8.EE.B Work with radicals and integer exponents					
8.EE.2 Use square root and cube root symbols to represent solutions to equations of the form x squared = p and x cubed = p, where p is a rational #. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that the square root of 2 is irrational.	8.EE.B.1 8.EE.B.2	Use radical notation to evaluate small perfect sq and perfect cubes. Know that the square root of 2 is irrational.	Module 7: Introduction to Irrational Numbers using Geometry		