Academic Language Activities in Sheltered STEM Content Instruction

Catherine Kim, PhD (catherinekim@pacificu.edu) Kevin Carr, PhD (kcarr@pacificu.edu) Pacific University Jon Pope (pope7996@pacificu.edu) Pacific University/Woodburn School District

English Learners in Secondary STEM Subjects

ELs in Secondary Schools: Characteristics and Challenges

- 1) Teenagers who immigrate to the U.S. have more difficulty than young learners -> Low high school graduation rates.
- 2) When compared to those from English-speaking homes, the drop out rate is three times higher for this population.
- Academic content and vocabulary required for secondary subjects are much more challenging than elementary-level (25000- 30000 words should be learned by 9th grade).

Characteristics of Academic Language Required in STEM Content Subjects

- Vocabulary : Academic vocabulary vs Content-specific vocabulary. Latin-based root, prefixes, and suffixes
- Linguistic Structures: Passive voice, conditional clauses, complex and embedded clauses
- Text characteristics: Interpretive, Descriptive, Analytical, Argumentative, Supporting with evidence

STEM Sheltered Content Lesson Planning: Key Elements

- Lesson goals and objectives
- Content objectives and national standards (CCSS, NGSS)
- Language objectives and ELP standards (ELPA21)
- Content assessment and language assessment
- The extent of content and language integration (i.e., To what extent language-focused activities will/should be integrated into the content instruction, and what are the essential language aspects to be included in the lesson?)

Language and Literacy Integration into STEM Content Lessons: Key Considerations

- Identification of key content vocabulary
- Identification of key linguistic structures
- Identification of key language functions
- Consideration of different language proficiency levels of ELs in one classroom
- Balancing language skills (oral-language vs. written language; receptive language (listening or reading) vs. productive language skills (speaking or writing)

Identification of Key Content Vocabulary

- What is "key content vocabulary" and how do you identify them?
- How many new words in one lesson?
- Approaches to teaching key content vocabulary

- Attention, Noticing, and Input Enhancement in Second language vocabulary learning (target vocabulary highlighted and enhanced to draw learners' attention)

- Morpheme-based vocabulary learning (common morphemes used in content subjects focused and practiced in content lessons)

- **Tiered** vocabulary learning (Tier 1 (basic), Tier 2 (function words critical to learning Tier 3 words, Tier 3(content-specific low frequency words)

- Link-based vocabulary learning based on thematic links (New words grouped based on thematic categories)

Identification of key linguistic structures

What is "key linguistic structures" and how to identify them

Linguistic scaffolding in STEM content instruction

 Sentence starters (to prompt ELs to start with a correct sentence structures)
 Leveled sentence frames (to accommodate different

English proficiency levels)

Identification of key language functions

Analysis of content teaching and learning materials for "key language function" identification

- Types of language functions: Descriptive, Interpretive, Comparative, Contrastive, Summative, Argumentative.
- Linguistic structures correlating with language functions

(e.g.,

Descriptive/Defining: A is B. Interpretive: A is inferred from B.

Comparative: A is ______er/more _____ than B. Summative: In summary, A is B.

Argumentative: A is B because B is C.)

Academic Language Integration for Alignment with NGSS and CCSS

How language and literacy integration is essential for the alignment with NGSS and CCSS 8

Example NGSS and CCSS standards showing how language and literacy competency is **(** emphasized in all content subject areas for secondary learners.

Mat

Relationships and

Convergences

Found in: I. CCSS for Mathematics (practices) 2a. CCSS for ELA & Literacy (student capacity) 2b. ELPD Framework (ELA "practices") 3. NGSS (science and engineering practices)

Notes:

- 1. MP1-MP8 represent CCSS Mathematical Practices (p. 6-8).
- 2. SP1-SP8 represent NGSS Science and Engineering Practices.
- 3. EPI-EP6 represent CCSS for ELA "Practices" as defined by the ELPD Framework (p. 11).
- 4. EP7* represents CCSS for ELA student "capacity" (p. 7).

Stanford GRADUATE SCHOOL OF

Understanding Language

Suggested citation:

Cheuk, T. (2013). Relationships and convergences among the mathematics, science, and ELA practices. Refined version of diagram created by the Understanding Language Initiative for ELP Standards. Palo Alto, CA: Stanford University.

MP1. Make sense of problems and persevere in solving them MP2. Reason abstractly and quantitatively MP6. Attend to precision MP7. Look for and make use of

structure MP8. Look for and express regularity in repeated

reasoning EP7*.

> Use technology and digital media strategically and capably

MP5. Use appropriate tools strategically

SP1. Ask guestions and define problems MP4. Model with mathematics SP3. Plan and carry out investigations SP5. Use mathematics and

SP2. Develop

SP4. Analyze and interpret data SP6. Construct explanations

Science

EP1. Support analysis of a range of gradelevel complex texts with evidence

MP3 and EP3. Construct viable and valid arguments from evidence and critique reasoning of others

SP7. Engage in argument from evidence

SP8. Obtain, evaluate, and communicate information

EP2. Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience

and design solutions

EP4. Build and present knowledge through research by integrating, comparing, and synthesizing ideas from text

EP5. Build upon the ideas of others and articulate their own clearly when working collaboratively

> EP6. Use English structures to communicate context specific messages

Teacher's Experiences with Integrating Language Instruction with STEM Content

Compare o Contrast The ____ and the ___ are similar because they both _____ In addition, they (All more as peoled -) They are different because the _____, but the _____. Also, the _____ whereas (Add more as needed) Remember to ask yourself, "Will it be clear to the reader what I (mean when I write the pronouns) they and it?

Data Analysis Writing "Introductory/topic sentence: This graph/table shows_____ "Summarize the data -Qualitative data: more/less; longer/shorter Quantitative data: Actual quantities/measurements Concluding statement(s): Therefore, I think " Outliers inconsistent data: Some data were inconsistent I think this happened because_ "Connection to real world: This information could be important because _____

Traditional Science Class Question and Answer

330	12/07/09	5630
00	How does a neon bulk Compare	
	withan incadescent bulb?	
		A
	They do not look alike.	
	The Incodescent and neon probably	-
_	don't work the same way because the	B
	insides are different. we can turn	
	them on to find out by observing	-
	when they are on.	C
	NEON BUIB Incodescent BUIB	-
	A	P
	()	
	Affelectricity The electricity	-
	A sorth back the wine.	E
_		-
-	6	
		F

Data Table

What patterns can be seen in the mass, volume, and density of various substances?

Background information:

We know that mass measures the amount of matter in a sample, volume is the amount of space a sample takes up, and density is the relationship between the mass and the volume.

Procedure:

For each substance, we will find the mass, volume and density for one or more samples.

Data Table

Substance		Mass	Volume of water only	Volume of water + sample	Volume of sample (subtract V of water)	Density (M divided by V)
Sleel	S	33.1	40	45	5	6.62
steel	_M	5915	40	48	8	7. 4375
Steel	L	70.3	40	49	9	7,811111
Brass	S	·m.3	40	92	2	3,66
breass	_M	16.7	40	44	4	9.175
Brass	_L	39	216	216	6.	6.5
						1
Plastic	_ S	10,5	40	49	8	0.8125
Plastic	_M	8.5	Ric	222	12	0.1083333
Plasfi	L	11.5	230	244	14	0.8214285

Data Analysis for question, What patterns can be seen in the mass, volume, and density of various substances?

See any patterns yet? Describe what you see.

Scaffolded Data Analysis

Observations: The densities for each material (substance) are about the same. The masses of the substance. were different. The volume were different to. Data Analysis This table shows the mass, density and volume of various substances. The densities are more Similar than the volumes. They are also more similar than the masses. The bass wood densities 0.49, 0.45, and 0.45 PVC densities were 1.45, 1.32, and 1.56. The densities of plastic were 0.81, 0.70, and 0.81. Bythecontrast the volume of bass wood was 28 millillers, 46 ml, and Com!. There for we think that the densities are always the same. Even though the mass and volume can be different.

Scaffolded Observations

Does time of year affect invertibrate Populations? Does temperature affect invertibrate populations?

Graphs with Data Analysis

Data Analysis

Sheltered STEM Lesson Sequence – Goals and Objectives

- STEM content lesson for MS (6-8)
- Lesson goals and objectives
- Content objectives
- Correlating NGSS or standards
- Language objectives
- Correlating ELP standards

Unit: Cloud and Wind	Lesson: 2	Essential	Questio	n: How does the wind and rain		
Formation		as	sociated	with a hurricane form?		
Standards Addressed				Science and Engineering		
MS-ESS2-5: Collect data	to provide evidence for	r how the motio	ns and	Practices: Planning and		
complex interactions of an	masses result in change	ges in weather		Carrying Out Investigations		
conditions	1 1 1 1 1	·	1			
ELP.6-8.5: conduct resear	ch and evaluate and co	mmunicate find	lings to			
ELD 6 8 9 : areata alaar an	d acherent grade annr	printa craach a	nd toxt			
Linit Objectives	u concrent grade-appre	opitale speech a		n Objectives		
\checkmark Students will apply th	eir understanding of ai	r masses and	✓ I	will describe how hot and cold air		
their interaction to we	ather formation	i masses and	m	asses interact		
\checkmark Students will apply th	eir understanding of co	onvection	V Iv	will explain, using evidence, how		
currents to wind form	ation.		W	ind is generated		
	Content Target Exp	ressed in Acad	emic La	nguage		
I predict that when hot and	l cold air masses collid	e, the hot air wi	ll rise up	above the cold air. I think this		
will happen because I used	l smoke to watch warm	n air rise. This h	appened	because warm air is less dense		
than cold air.						
In order to test my predict	on, we made warm and	d cold air collid	e. When	hot and cold air collided, I		
observed the warm air rise	, pulling the cold air in	to the tube unde	erneath.	The smoke showed air flowing		
from one tube to another.	My observations show	that the warm a	Ir is less	dense, and when it rose it left		
room for the cold air to mo	we underneath, creath	ig a convection	current c	DI air.		
My observations show that	t cold air always move	s underneath wa	arm air d	creating wind currents. When air		
masses of different temper	atures collide wind cu	rrents form Fo	r examp	le when warm air over the land		
collides with cold air over	the ocean wind forms	This is why it	is often	windy at the beach		
Language Forms and Fu	nctions	Language	Stems			
Descriptive		I predict th	nat when	hot and cold air masses collide,		
Interpretive		-				
*Making arguments with	supporting evidence					
(focus)		I think this	I think this will happen because			
				·		
Linguistic Structures						
Wh- questions, past tense,	embedded clauses with	h In order to	test my	prediction, I		
because						
Academic Vocabulary	Science Vocabulary	When hot	and cold	air collided, I observed		
• collide	 hypothesis 					
• prediction	• air mass	Myschoom	nationa al	how that		
	 convection currer 	nt wiy observ	ations si	now that		
				·		
		For examp	ole.			
		1 or onump		<u> </u>		

Unit: Cloud and V	Wind	Lesson: 2	Essential Question: How does the wind and rain				
Formation				ass	sociated	with a hurricane	form?
Standards Addresse	d					Science and Er	ngineering
MS-ESS2-5: Collect	data to prov	vide evidence for	r how	the motion	ns and	Practices: Plan	ning and
complex interactions	of air mass	es result in chan;	ges in	weather		Carrying Out In	rvestigations
conditions							
ELP.6-8.5: conduct research and evaluate and communica answer questions or solve problems				nicate find	ings to		
ELP.6-8.8: create cle	ar and cohe	erent grade-appro	opriate	e speech ai	nd text.		
Unit Objectives					Lesso	n Objectives	
✓ Students will app	ly their und	derstanding of ai	r mass	ses and	✓ 1	will describe how	hot and cold air
their interaction to weather formation.				masses interact			
 Students will apply their understanding of convection 			tion	on 🗸 I will explain, using evidence, how			
currents to wind formation.			wind is generated				
1	room for the cold air to move underneath, creating a convection cr			convection curre	ent of air.		
1	My observations s	show that cold air always i	moves un	derneath warm a	air, creating	wind currents. When air	
1	masses of differen collides with cold	at temperatures collide, wi air over the ocean, wind f	nd curren forms. Th	nts form. For exa his is why it is of	ample, wher ften windv a	warm air over the land t the beach.	
	Language Forms	and Functions		Language Ste	ms	1.4 - 1.4	
I	Interpretive			I predict that w	hen hot and	cold air masses collide,	
;	*Making argume	ents with supporting evid	lence				
	(locus)			·			
]	Linguistic Struct Wh- questions pa	ures st tense embedded clause	es with	the In order to test my prediction I			
l	because						
	Academic Vocab collide	ulary Science Vocabu • hypothesis	lary	When hot and	cold air coll	ided, I observed	
	prediction	• air mass					
		convection c	current	iviy observation	ns snow that		
				For example			
				r or example, _		·	

Unit: Cloud and Wind	Lesson: 2	Essential (Questio	on: How does the wind and rain
Formation		ass	ociated	with a hurricane form?
Standards Addressed				Science and Engineering
MS-ESS2-5: Collect data to pro	ovide evidence for	r how the motion	ns and	Practices: Planning and
complex interactions of air mas conditions	ses result in chan	ges in weather		Carrying Out Investigations
ELP.6-8.5 : conduct research ar answer questions or solve problem.	nd evaluate and co lems	ommunicate findi	ings to	
ELP.6-8.8: create clear and col	nerent grade-appro	opriate speech an	d text.	
Unit Objectives			Lesso	on Objectives
✓ Students will apply their un	nderstanding of ai	r masses and	🗸 I	will describe how hot and cold air
their interaction to weather	formation		n	nacces interact

Content Target Expressed in Academic Language

I predict that when hot and cold air masses collide, the hot air will rise up above the cold air. I think this will happen because I used smoke to watch warm air rise. This happened because warm air is less dense than cold air.

In order to test my prediction, we made warm and cold air collide. When hot and cold air collided, I observed the warm air rise, pulling the cold air into the tube underneath. The smoke showed air flowing from one tube to another. My observations show that the warm air is less dense, and when it rose it left room for the cold air to move underneath, creating a convection current of air.

My observations show that cold air always moves underneath warm air, creating wind currents. When air masses of different temperatures collide, wind currents form. For example, when warm air over the land collides with cold air over the ocean, wind forms. This is why it is often windy at the beach.

Linguistic Structures Wh- questions, past tense because	, embedded clauses with	In order to test my prediction, I
 Academic Vocabulary collide prediction 	 Science Vocabulary hypothesis air mass convection current 	When hot and cold air collided, I observed

	Unit: Cloud and Wind	Lesson: 2	Essential	Question	1: How does the wind and rain	
	Formation		ass	sociated	with a hurricane form?	
	Standards Addressed				Science and Engineering	
	MS-ESS2-5: Collect data to pro	ovide evidence for	r how the motion	ns and	Practices: Planning and	
	complex interactions of air mas	ses result in chan	inges in weather Carrying Out Investigations		Carrying Out Investigations	
	conditions					
	ELP.6-8.5: conduct research ar	nd evaluate and co	ommunicate find	ings to		
	answer questions or solve prob	lems				
	ELP.6-8.8: create clear and col	nerent grade-appro	opriate speech ar	nd text.		
	Unit Objectives	1 . 1' C '	1	Lessor	Objectives	
	 Students will apply their un 	nderstanding of ai	r masses and	V IV	vill describe how hot and cold air	
	their interaction to weather	· Iormation.	musstion	ma Martin	asses interact	
	 Students will apply their up summants to wind formation 	iderstanding of co	Silvection		nd is constant	
		tont Tongot Exp	nessed in Acad		nu is generated	
	L predict that when hot and cold	l air masses collid	le the hot air wi	ll rise un	above the cold air. I think this	
	will happen because I used smo	ke to watch warn	n air rise. This h	annened	because warm air is less dense	
	than cold air			appened	because warm an is less dense	
	In order to test my prediction, y	ve made warm	,			
	observed the warm air rise, pul	ling the cold ai	Language Stems			
	from one tube to another. My o	bservations she	I predict that when hot and cold air masses collide,			
	room for the cold air to move u	nderneath, crea				
					·	
	My observations show that cold	l air always me				
	masses of different temperature	s collide, wind	T 41. : 1. 41. :			
	collides with cold air over the c	cean, wind for	I think this will happen because			
	Language Forms and Functio	ons	·			
	Descriptive					
	Interpretive					
	^Making arguments with sup	porting evide	In order to test my prediction, I			
	(locus)					
	·					
Academic Vocabula	ry Science Vocabu	lary	When hot and cold air collided, I observed			ed
• collide	hypothesis					
conde	inypotnesis	II '				
 prediction air mass 						
-	convection	urrent II	My observ	ations	s show that	
	convection					
			For examp	le,		

	Unit: Cloud and Wind Formation	Lesson: 2	Essential	Question	1: How does the wind and rain with a hurricane form?
	Standards Addressed	······	. 1 41		Science and Engineering
	complex interactions of air ma	sses result in chan	ges in weather	is and	Carrying Out Investigations
	conditions	, , , ,			
	ELP.6-8.5: conduct research a	nd evaluate and co	mmunicate find	ings to	
	ELP.6-8.8: create clear and co	herent grade-appro	opriate speech ar	nd text.	
	Unit Objectives ✓ Students will apply their u	nderstanding of ai	r masses and	Lesson ✓ Iw	Objectives vill describe how hot and cold air
	their interaction to weathe	r formation.		ma	asses interact
	\checkmark Students will apply their u	inderstanding of co	onvection	✓ Iw	vill explain, using evidence, how
	currents to wind formation	1. ntent Target Exp	ressed in Acade	W1 mic Lar	nd is generated
	I predict that when hot and cold air masses collide, the hot air will rise up abo will happen because I used smoke to watch warm air rise. This happened bec than cold air.				above the cold air. I think this because warm air is less dense
	In order to test my prediction, we made warm and cold air collide. When hot and cold air collide observed the warm air rise, pulling the cold air into the tube underneath. The smoke showed air from one tube to another. My observations show that the warm air is less dense, and when it rose room for the cold air to move underneath, creating a convection current of air.				
	My observations show that col masses of different temperatur	d air always move es collide, wind cu	s underneath wa urrents form. Fo	rm air, c r exampl	reating wind currents. When air e, when warm air over the land
Lang	guage Forms and	Functions			t the beach.
Desc	rintive				cold air masses collide,
nton	netivo				·
mer	pietive				ause
[•] Ma	king arguments w	ith support	rting evid	lence	
focu	is)				on, I
					dad Labsarriad
Ling	uistic Structures				ded, i observed
Wh-	questions, past ten	se, embedd	led clause	s wit	h
beca	use	,			·
•		~ •	For examp	ľe,	
			1		

Unit: Cloud and Wind	Lesson: 2	Essential Question: How does the wind and rain
Formation		associated with a hurricane form?
Standards Addressed		Science and Engineering
MS-ESS2-5: Collect data to pro	ovide evidence fo	or how the motions and Practices: Planning and
complex interactions of air mas	ses result in chan	ages in weather Carrying Out Investigations
ELD (9.5. and hast manual, and		
ELP.0-8.5: conduct research an	a evaluate and co	ommunicate findings to
FLP 6 8 8 : create clear and col	oms arant grade appr	convicte speech and text
Unit Objectives	icrem grade-appre	Usson Objectives
\checkmark Students will apply their up	nderstanding of ai	ir masses and I will describe how hot and cold air
their interaction to weather	formation.	masses interact
✓ Students will apply their un	nderstanding of co	onvection I will explain, using evidence, how
currents to wind formation		wind is generated
Cor	itent Target Exp	oressee in Academic Language
I predict that when hot and cold	l air masses collid	de, the ot air will rise up above the cold air. I think this
will happen because I used smo	ke to watch warn	n air rise. This happened because warm air is less dense
than cold air.		
In order to test my prediction, y	ve made warm an	nd cold an collide. When hot and cold air collided, I
observed the warm air rise, pull	ing the cold air ir	nto the tube underneath. The smoke showed air flowing
from one tube to another. My o	nderwations snow	that the warm air is less dense, and when it rose it left
room for the cold air to move u	nderneath, creath	ng a convention current of air.
My observations show that cold	l air always move	es undernean warm air creating wind currents. When air
masses of different temperature	s collide wind cu	urrents form. For example, when warm air over the land
collides with cold air over the c	cean. wind forms	s. This is why it is often windy at the beach.
Language Forms and Function	ns	Language Stems
Descriptive		I predict that when hot and cold air masses collide,
Interpretive		
*Making argun ents with sup	porting evidence	e
(focus)		I hink this will happen because
		· · · · · · · · · · · · · · · · · · ·
Linguistic Structures		
Wh- questions, past tense, emb	edded clauses wit	th In order to test my prediction, I
because		
Academic Vocapulary Scie	nce Vocabulary	When hot and cold air collided, I observed
• collide •	hypothesis	· · · · · · · · · · · · · · · · · · ·
• prediction •	air mass	March and and from the t
•	convection current	nt Viy observations show that
		· · · · · · · · · · · · · · · · · · ·
		For example
		1 of example,

Example STEM Lesson Sequence – Content-specific activities

Inquiry 5.1 Investigating the Effects of Colliding Air Masses

PROCEDURE

- Collect one copy of Student Sheet 5.1a: When Air Masses Meet. Read the question at the top of the student sheet: What happens when two of the same and then different—air masses meet? You will investigate this question during the inquiry.
- 2. Look at one set of connected Convection Tubes and the materials for each group. Then look at Table 1 on Student Sheet 5.1a. What are some ways you might set up this equipment to investigate the question in this inquiry? Discuss this with vour class. One suggested setup is shown in Figure 5.1.3. On your student sheet, make a list of the materials you will use and the
 - the materials you will use and the procedures you will follow to test each setup. Be prepared to share your ideas with the class.

Candle

Figure 5.1 Connected Convection Tubes

4. What will you keep the same in each

5. What do you think will happen when

cold, moist air meets cold, moist air? What do you think will happen when

warm moist air meets warm moist air?

What will happen when cold moist air

meets hot dry air? Discuss your predic-

tions with your group. Record what you

think will happen in the Predictions col-

umn in Table 1 on your student sheet.

Sheet 5.1a.

setup? What will you change during each

test? Write down your ideas on Student

- Review with your teacher the following points, which you should keep in mind while you work:
- Keep the Convection Tubes connected at all times.
- B. Do not record any temperature changes in this lesson.
- C. Introduce smoke into the top of the cylinder, as shown in Figure 5.2.
- 7. Before you begin, review Safety Tips with your teacher.
- 8. Collect and set up your materials. Begin the investigation. Discuss your observations with your group as you work, and record them on your student sheet. For each setup, remember the procedures your group developed. Use your flashlight to see the smoke.
- 9. When you have finished testing all three conditions, clean up. Put out the burning punk by dipping just the tip of it in a cup of water. Cut off the wet tip with the scissors. Refill your container with crushed loe for the next class.

SAFETY TIPS

Roll up loose sleeves and tuck in loose clothing. Tie back long hair.

Do not let the burning punk touch the cylinder. The plastic cylinder will melt if it does.

Do not ask your teacher to light your candle until you are ready.

Do not reach across an open flame. Do not leave the candle under the plastic cylinder for longer than 1 minute. The plastic will get hot.

Figure 5.2 Use the punk stick to introduce smoke

into the top of the tube.

Crushed ice

Example STEM Lesson Sequence – Language-specific activities

Convection Currents in the Air

Hold on to your hat! Whether you are walking along a beach or flying a kite in an open field, a really windy day can make you feel like you are about to be swept off your feet. Breezes occur because of the different rates at which land and water heat and cool.

INTRODUCTION

What causes the wind to blow? Mostly, it has to do with the uneven heating of the earth. Breezes occur because land and water heat and cool at different rates.

When the sun's energy heats the earth, the temperature of the air above the earth's surface changes. Air, warmed by the surface below it, starts to rise, and cool air moves in to take its place. This circulation of air causes changes in the weather, including the formation of winds.

In this lesson, you will connect two of the Convection Tubes you used in Lesson 4. What happens when two masses of air with the same temperature and humidity meet? What happens when air masses of different temperature and humidity conditions meet? After observing the movement of air in the convection model you set up, you will apply what you have learned to two real-world situations. You will analyze how land breezes and sea breezes form and how tornadoes develop in the United States.

OBJECTIVES FOR THIS LESSON

Set up an investigation that demonstrates what happens to two air masses when they meet.

Analyze the movement of two air masses with different temperature and humidity conditions.

Devise working definitions for the terms "convection current" and "weather front."

Relate the movement of air within the convection model to the formation of land and sea breezes and the development of tomadoes

Explain how winds form

Key Content Vocabulary

Identifying key content vocabulary

- Academic vocabulary: collide, prediction

- Science-specific vocabulary: hypothesis, air mass, convection current, circulation of air

Vocabulary-Specific Activities
 Pre-teaching key-content vocabulary (using visuals and images) – also highlight these words in the text for textual input enhancement.

Collide:

Convection current:

Strengthening the understanding of the key-content vocabulary using 4columns of vocabulary chart

New word	Definition	Picture	Connections

Key Linguistic Structures

Identifying key linguistic structures and sentences:

(1) Wh- questions for "prediction."
What happens when hot and warm air masses collide?
I predict that when hot and cold air masses collide, the hot air will rise up above the cold air.

(2) Making arguments using "because –"

The hot air will rise up above the cold air because warm air is less dense than cold air.

(3) Stating observations using past tense verbs

When hot and cold air <u>collided</u>, I <u>observed</u> the warm air rise, pulling the cold air into the tube underneath. The smoke <u>showed</u> air flowing from one tube to another.

Key Linguistic Structures Practice

Stating predictions using leveled sentence frames/starters (depending on language proficiency; chosen by ELs)

Q: What do you think will happen when cold moist air meets hot dry air?

A: I predict that ______ will ______.

Making arguments using "because-"

Q: What do you think will happen when cold, moist air meets hot dry air?

A: I predict that		(high-level language proficiency)	
I predict that	will	because (mid-level language proficiency)	
I predict that	will	Warm air is less dense than cold air. (lower language proficie	ncy)

Stating observations

Q: What did you observe when the tubes contained air with different temperature and humidity conditions?
A: My observations show that _________. (high-level language proficiency)
I observed that ________. I think this happened because _______. (mid-level language proficiency)
I observed that warm air _______. Warm air is less dense than cold air. . (lower language proficiency)

Key Language Functions

- Making predictions (ELs should be able to complete sentences of predictions in classroom discourse as well as in writing).
- Making arguments with supporting evidence or examples (ELs should be able to make a proper argument and support their claim based on their predictions and observations both orally and writing).
- Stating observations (ELs should be able to state what they actually observed both orally and in writing).

Example STEM Lesson Sequence – Content Assessment

REFLECTING ON WHAT YOU'VE DONE

1. Answer the following questions. Discuss your observations with the class.

A. What did you observe when both tubes contained air with the same temperature and humidity conditions? Why do you think this happened?

B. What did you observe when the tubes contained air with different temperature and humidity conditions? Why do you think this happened?

C. On the basis of your results from Lessons 4 and 5, under what conditions do you think winds and rotating storms might form?

- 2. Look again at the illustration in "Air Masses" (Lesson 4). Where in the United States do you think air masses with different temperature and humidity conditions might meet? The boundary that forms when this happens is called a weather front. What type of weather do you think might occur along a front?
- 3. A convection current formed when you set up the Convection Tubes so that a hot air mass collided with a cold one. Use your experiences to write your own definitions for the terms "convection current" and "weather front." Discuss your definitions with the class.
- Read "Why Does the Wind Blow?" on pages 59–62 and "Weather Fronts" on page 63. Revise your definitions if needed.

- 5. Your teacher will ask you to complete Student Sheet 5.1b: Convection on the Earth to find out what you know about how air moves. On this sheet you will do these steps:
 - Illustrate how air moved in your group's Convection Tube.
 - Relate the movement of air within your convection model to the formation of land and sea breezes.
 - Apply the movement of air within your convection model to the development of tornadoes.

Example STEM Lesson Sequence – Language Assessment

- Criteria for language assessment: Vocabulary, Linguistic structures and Language functions
- Vocabulary: Students can define key-content vocabulary, particularly, science vocabulary both orally and in writing
- Linguistic structures (forms): Students can complete sentences using the (leveled) sentence frames provided to them.

Language functions: Students can demonstrate their understanding of three distinctive language functions correlating with the lesson (i.e., making predictions, making arguments, and stating what they observed).

Conclusion: Integration of Language and Content

Why integration is necessary?

Language-focused learning activities enable ELs to comprehend the STEM lesson more clearly, and build better understanding of core STEM concepts. Also, these activities help facilitate ELs' language development for general academic discourse; CCSS and NGSS focus on language competence as well, so it is important to address language needs of ELs even in STEM content subjects.

To what extent should language and literacy be integrated?

As much as possible, and to the extent necessary. STEM teachers should at least be prepared to explicitly teach key vocabulary and language concepts **before and during** content-related learning activities.

References

- CalderÓn, M. (2007). Teaching reading to English language learners, Grades 6-12. Corwin Press.
- Doughty, C., & Williams, J. (1999). Focus on form in classroom second language acquisition. The Cambridge Applied Linguistics Series.
- Herrell, A. L., Jordan, M. (2012). 50 strategies for teaching English language learners. Pearson.
- Kress, J. E. (2008). The ESL/ELL teacher's book of lists. Jossey-Bass.
- Lems, K., Miller, L. D., Soro, T. M. (2010). Teaching reading to English language learners: Insights from linguistics. New York: The Guilford Press.
- Short, D. J., Vogt, M., Echevarria, J. (2011). The SIOP Model for Teaching Science to English Learners. Pearson.