Title:

Name:
Period:
Date:

Wild Guess:

Research Question:

Hypothesis:

> Graph form:

In Words: I think the relationship will be in the form of a \qquad pattern.

Variables

Independent Variable (IV):
Dependent Variable (DV):
Constants - include actual numbers if needed(C):
Method: Experimental Set-up (diagram of your experiment)
How you measure your DV and IV.
Can another person replicate your experiment exactly?

Description of experiment as you are carrying it out.

Values of Controlled variables

Data Table Title: (Include units, averages, and uncertainties)

Graph of data (include title, units, uncertainties, and best fit curve)

From Logger Pro:
Type of best fit line:
(linear, quadratic, inverse, inverse sq.)
Mathematical Formula:
\qquad

Formula with curves coefficient (a value)
\qquad = \qquad

Conclusion:

Since the best fit line is \qquad \{linear, quadratic, inverse, inverse square\}, I conclude therefore the relationship discovered is \qquad \{linear, quadratic, inverse, inverse square\}, between \qquad (IV) and the \qquad (DV) This can be modeled mathematically as:
\qquad - $\{y=a x, y=a \times 2, y=a / x, y=a / x 2\}$. The coefficient value (A value) is \qquad and represents

So I predict with \qquad \{low, medium, high\} confidence based on my data that with a prediction of \qquad my value will be
\qquad because the data is \qquad (near, close) to my range and the data points fall__ (near, close) to my pattern.

