CCSSM High School Course Alignment (Traditional)

The high school standards specify the mathematics that all students should study in order to be college and career ready. Additional mathematics that students should learn in order to take advanced courses such as calculus, advanced statistics, or discrete mathematics is indicated by (+), as in this example:
(+) Represent complex numbers on the complex plane in rectangular and polar form (including real and imaginary numbers).

All standards without a (+) symbol should be in the common mathematics curriculum for all college and career ready students. Standards without a (+) symbol may also appear in courses intended for all students.

The high school standards are listed in conceptual categories:

- Number and Quantity
- Algebra
- Functions
- Modeling
- Geometry
- Statistics and Probability

Conceptual categories portray a coherent view of high school mathematics; a student's work with functions, for example, crosses a number of traditional course boundaries, potentially up through and including calculus.

Modeling

Modeling is best interpreted not as a collection of isolated topics but in relation to other standards. Making mathematical models is a Standard for Mathematical Practice, and specific modeling standards appear throughout the high school standards indicated by a star symbol (\star). The star symbol sometimes appears on the heading for of standards; in that case, it should be understood to apply to all standards in that group.

Mathematical Practices (K-12)

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

The Standards for Mathematical Content are a balanced combination of procedure and understanding. Expectations that begin with the word "understand" are often especially good opportunities to connect the practices to the content.

Number \& Quantity

Identify in which Unit/Lesson each standard is addressed for each course. Identify whether the standard is addressed completely ($\sqrt{ }$) or partially (\approx).
(*Indicates a Modeling Standard)

The Real Number System (N-RN) (*Indicates a Modeling Standard)						
			A1	G	A2	
	Extend the properties of exponents to rational exponents.					
	N-RN. 1	Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=5\left({ }^{1 / 3}\right)^{3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5.	x			
	N-RN. 2	Rewrite expressions involving radicals and rational exponents using the properties of exponents.	x			
	Use properties of rational and irrational numbers.					
	N-RN. 3	Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.	x			

Number \& Quantity

The Complex Number System (N-CN)

Vector and Matrix Quantities (N-VM)

		A1	G	A2				
Represent and model with vector quantities.								
$\begin{gathered} \text { N-VM. } 1 \\ (+) \end{gathered}$	Recognize vector quantities as having both magnitude and direction. Represent vector quantities by directed line segments, and use appropriate symbols for vectors and their magnitudes (e.g., $\boldsymbol{v},\|\boldsymbol{v}\|,\\|\boldsymbol{v}\\|, \boldsymbol{v}$).							
$\text { N-VM. } 2$ $(+)$	Find the components of a vector by subtracting the coordinates of an initial point from the coordinates of a terminal point.							
N-VM. 3 (+)	Solve problems involving velocity and other quantities that can be represented by vectors.							
Perform operations on vectors.								
$\text { N-VM. } 4$ $(+)$	Add and subtract vectors.							
a.	Add vectors end-to-end, component-wise, and by the parallelogram rule. Understand that the magnitude of a sum of two vectors is typically not the sum of the magnitudes.							
b.	Given two vectors in magnitude and direction form, determine the magnitude and direction of their sum.							
c.	Understand vector subtraction $\boldsymbol{v}-\boldsymbol{w}$ as $\boldsymbol{v}+(-\boldsymbol{w})$, where $-\boldsymbol{w}$ is the additive inverse of \boldsymbol{w}, with the same magnitude as \boldsymbol{w} and pointing in the opposite direction. Represent vector subtraction graphically by connecting the tips in the appropriate order, and perform vector subtraction component-wise.							
$\begin{gathered} \hline \text { N-VM. } 5 \\ (+) \\ \hline \end{gathered}$	Multiply a vector by a scalar.							
a.	Represent scalar multiplication graphically by scaling vectors and possibly reversing their direction; perform scalar multiplication component-wise, e.g., as $c\left(v_{x}, v_{y}\right)=\left(c v_{x}, c v_{y}\right)$.							
b.	Compute the magnitude of a scalar multiple cv using $\\|\subset v\\|=\|c\| v$. . Compute the direction of $c \boldsymbol{v}$ knowing that when $\|c\| \boldsymbol{v} \neq 0$, the direction of $c \boldsymbol{v}$ is either along \boldsymbol{v} (for $c>0$) or against \boldsymbol{v} (for $c<0$).							
Perform operations on matrices and use matrices in applications.								
$\begin{gathered} \text { N-VM. } 6 \\ (+) \\ \hline \end{gathered}$	Use matrices to represent and manipulate data, e.g., to represent payoffs or incidence relationships in a network.							
N-VM. 7 (+)	Multiply matrices by scalars to produce new matrices, e.g., as when all of the payoffs in a game are doubled.							
$\begin{gathered} \hline \text { N-VM. } 8 \\ (+) \end{gathered}$	Add, subtract, and multiply matrices of appropriate dimensions.							
$\begin{gathered} \text { N-VM. } 9 \\ (+) \end{gathered}$	Understand that, unlike multiplication of numbers, matrix multiplication for square matrices is not a commutative operation, but still satisfies the associative and distributive properties.							
$\begin{gathered} \text { N-VM. } 10 \\ (+) \end{gathered}$	Understand that the zero and identity matrices play a role in matrix addition and multiplication similar to the role of 0 and 1 in the real numbers. The determinant of a square matrix is nonzero if and only if the matrix has a multiplicative inverse.							
$\begin{gathered} \text { N-VM. } 11 \\ (+) \end{gathered}$	Multiply a vector (regarded as a matrix with one column) by a matrix of suitable dimensions to produce another vector. Work with matrices as transformations of vectors.							
$\begin{gathered} \text { N-VM. } 12 \\ (+) \end{gathered}$	Work with 2×2 matrices as a transformations of the plane, and interpret the absolute value of the determinant in terms of area.							

(*Indicates a Modeling Standard)

Seeing Structure in Expressions (A-SSE)

Arithmetic with Polynomials and Rational Expression (A-APR)

Algebra

Creating Equations (A-CED)

Reasoning with Equations and Inequalities (A-REI)

Algebra

Reasoning with Equations and Inequalities (A-REI)

		A1	G	A2		
Solve systems of equations.						
A-REI. 5	Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.	x				
A-REI. 6	Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.	x				
A-REI. 7	Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersection between the line $y=-3 x$ and the circle $x^{2}+y^{2}=3$.	x				
$\begin{gathered} \text { A-REI. } 8 \\ (+) \end{gathered}$	Represent a system of linear equations as a single matrix equation in a vector variable.					
$\begin{gathered} \text { A-REI. } 9 \\ (+) \end{gathered}$	Find the inverse of a matrix if it exists and use it to solve systems of linear equations (using technology for matrices of dimension 3×3 or greater).					

Reasoning with Equations and Inequalities (A-REI)

Interpreting Functions (F-IF)

			A1	G	A2		
$\frac{\grave{a}}{\sigma}$E.	Understand the concept of a function and use function notation.						
	F-IF. 1	Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y=f(x)$.	x				
	F-IF. 2	Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.	x				
	F-IF. 3	Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by $f(0)=f(1)=1, f(n+1)=f(n)+f(n-1)$ for $n \geq 1$.	X				
1$\stackrel{0}{\sigma}$$\stackrel{\sigma}{E}$	Interpret functions that arise in applications in terms of the context. (Note: Linear, Quadratic, and Exponential in Algebra 1)						
	F-IF. 4	For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. *	x		x		
	F-IF. 5	Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function $h(n)$ gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. ${ }^{\star}$	x		x		
	F-IF. 6	Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. ${ }^{\star}$	x		x		
$\stackrel{\grave{a}}{\sigma}$है	Analyze functions using different representations. (Note: Linear, exponential, quadratic, absolute value, step, piecewise-defined in Algebra 1/ Focus on using key features to guide selection of appropriate type of model function in Algebra 2)						
	F-IF. 7	Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.*					
	a.	Graph linear and quadratic functions and show intercepts, maxima, and minima.	x				
	b.	Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.	x		x		
	c.	Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.			x		
	d. $(+)$	Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.					
	e.	Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude.	x		x		
	F-IF. 8	Write a function defined by an expression in different but equivalent forms to rever of the function.	al		diffe	ent prop	erties
	a.	Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.	x		x		
	b.	Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as y $=(1.02)^{t}, y=(0.97)^{t}, y=(1.01)^{12 t}, y=(1.2)^{t / 10}$, and classify them as representing exponential growth or decay.	x		x		
	F-IF. 9	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.	x		x		

Functions

Building Functions (F-BF)

Functions

Linear, Quadratic, and Exponential Models (F-LE)
Construct and compare linear, quadratic, and exponential models and solve problems.
F-LE. 1 Distinguish between situations that can be modeled with linear functions and with exponential functions.

a.	Distinguish between situations that can be modeled with linear functions and with exponential functions.	x				
b.	Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.	x				
c.	Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.	x				
F-LE.2	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table).	x				
F-LE.3	Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.	x				
F-LE.4	For exponential models, express as a logarithm the solution to ab $=\boldsymbol{d}$ where a, c, and d are numbers and the base b is 2,10, or e; evaluate the logarithm using technology.			x		
Interpret expressions for functions in terms of the situation they model.						
F-LE.5	Interpret the parameters in a linear or exponential function in terms of a context. (Note: Linear and exponential of form $\left.f(x)=b^{x}+\boldsymbol{k}\right)$	x				

(*Indicates a Modeling Standard)

Congruence (G-CO)

Geometry

Geometry

Expressing Geometric Properties with Equations (G-GPE)

Geometry

Geometric Measurement and Dimension (G-GMD)					
		A1	G	A2	
Explain volume formulas and use them to solve problems.					
G-GMD. 1	Give an informal argument for the formulas for the circumference of a circle, area of a circle, volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments.		x		
$\underset{(+)}{\text { G-GMD. } 2}$	Give an informal argument using Cavalieri's principle for the formulas for the volume of a sphere and other solid figures.				
G-GMD. 3	Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.*		x		
Visualize relationships between two-dimensional and three-dimensional objects.					
G-GMD. 4	Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of twodimensional objects.		x		

Modeling with Geometry (G-MG)

									A1	G	A2		
Apply geometric concepts in modeling situations.			x										
G-MG.1	Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).												
G-MG.2	Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot).		x										
G-MG.3	Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost; working with typographic grid systems based on ratios).		x										

(*Indicates a Modeling Standard)

Interpreting Categorical and Quantitative Data (S-ID)

Making Inferences and justifying Conclusions (S-IC)

		A1	G	A2		
Understand and evaluate random processes underlying statistical experiments.						
S-IC.1	Understand statistics as a process for making inferences about population parameters based on a random sample from that population.		x			
S-IC.2	Decide if a specified model is consistent with results from a given data- generating process, e.g., using simulation. For example, a model says a spinning coin falls heads up with probability 0.5. Would a result of 5 tails in a row cause you to question the model?		x			

Making Inferences and justifying Conclusions (S-IC)

| | | A1 | G | A2 | | |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Make inferences and justify conclusions from sample surveys, experiments, and observational
 studies. |
 S-IC.3 Recognize the purposes of and differences among sample surveys,
 experiments, and observational studies; explain how randomization relates
 to each. x
 S-IC.4 Use data from a sample survey to estimate a population mean or proportion;
 develop a margin of error through the use of simulation models for random
 sampling. x
 S-IC.5 Use data from a randomized experiment to compare two treatments; use
 simulations to decide if differences between parameters are significant. x
 S-IC.6 Evaluate reports based on data. x | | | | | |

Conditional Probability and the Rules of Probability (S-CP)

		A1	G	A2	
Understand independence and conditional probability and use them to interpret data.					
S-CP. 1	Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and," "not").		X		
S-CP. 2	Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.		X		
S-CP. 3	Understand the conditional probability of A given B as $P(A$ and $B) / P(B)$, and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B.		X		
S-CP. 4	Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. For example, collect data from a random sample of students in your school on their favorite subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.		X		
S-CP. 5	Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations. For example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.		x		
Use the rules of probability to compute probabilities of compound events in a uniform probability model.					
S-CP. 6	Find the conditional probability of A given B as the fraction of B 's outcomes that also belong to A, and interpret the answer in terms of the model.		x		
S-CP. 7	Apply the Addition Rule, $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$, and interpret the answer in terms of the model.		X		
$\begin{gathered} \text { S-CP. } 8 \\ (+) \end{gathered}$	Apply the general Multiplication Rule in a uniform probability model, $\mathrm{P}(\mathrm{A}$ and $B)=P(A) P(B \mid A)=P(B) P(A \mid B)$, and interpret the answer in terms of the model.		X		
$\begin{gathered} \hline \text { S-CP. } 9 \\ (+) \end{gathered}$	Use permutations and combinations to compute probabilities of compound events and solve problems.		X		

Using Probability to Make Decisions (S-MD)

Using Probability to Make Decisions (S-MD)

		A1	G	A2	
Use probability to evaluate outcomes of decisions.					
$\begin{gathered} \text { S-MD. } 5 \\ (+) \\ \hline \end{gathered}$	Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.				
a.	Find the expected payoff for a game of chance. For example, find the expected winnings from a state lottery ticket or a game at a fast food restaurant.				
b.	Evaluate and compare strategies on the basis of expected values. For example, compare a high-deductible versus a low-deductible automobile insurance policy using various, but reasonable, chances of having a minor or a major accident.				
$\begin{gathered} \text { S-MD. } 6 \\ (+) \end{gathered}$	Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).		x	x	
$\begin{gathered} \text { S-MD. } 7 \\ (+) \end{gathered}$	Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).		x	x	

